## Anticrepuscular rays

I took this photograph at dusk recently from the beach at Portobello, where Edinburgh meets the sea. As sunset pictures go, it’s not much to look at. But what caught my attention was the faint radiating pattern of light and dark in the sky.  The light areas are where the sun’s rays are illuminating suspended particles in the air. The dark areas are where the air is unlit, because a cloud is casting a shadow.  You may have seen similar crepuscular rays when the sun has disappeared behind the skyline and the landscape features on the skyline cast shadows in the air.

The rays in my picture appear to radiate from a point below the horizon, because that’s where the sun is…isn’t it?

No! Portobello beach faces north-east, not west. The sun is actually just about to set behind me! So why do the rays appear to come from a point in front of me? Shouldn’t they appear to diverge from the unseen sun behind me?

To understand why, we need to realise that the rays aren’t really diverging at all. The Sun is a very long way away (about 150 million kilometres), so its rays are to all intents and purposes parallel. But just as a pair of parallel railway tracks appear to diverge from a point in the distance, so the parallel rays of light appear to diverge from a point near the horizon.

The point from which the rays seem to diverge is the antisolar point, the point in the sky exactly opposite the sun, from my point of view. It’s where the shadow of my head would be. When I took the photograph, the sun was just above the horizon in the sky behind me, so the antisolar point, and hence the point of apparent divergence, is just below the horizon in the sky ahead of me.

For normal crepuscular rays, the (obscured) sun is ahead, and the light is travelling generally* towards the observer. The rays in the picture are anticrepuscular rays, because the light is generally travelling away from me. This was the first time that I had knowingly seen anticrepuscular rays.

*I say “generally” because the almost all of the rays aren’t travelling directly towards the observer. An analogy would be standing on a railway station platform as a train approaches: you’d say that it was travelling generally towards you even though it isn’t actually going to hit you.