Galactic greenhouse

Before Christmas, my enterprising friend Clare decided to brighten the dark nights of a Scottish winter by turning her greenhouse into an illuminated art gallery. She asked friends to produce translucent artworks that could be hung in the greenhouse and lit from within.

My contribution is a representation of the movement across the sky of Jupiter and Saturn (and some smaller planets) in the two years bracketing the recent Great Conjunction. It’s made from a sheet of wallpaper, painted black, with holes cut out and with coloured filters placed behind the holes.

A photograph of the piece. It’s just over 50 cm wide. The variations in brightness of the discs aren’t part of the plan; the illumination wasn’t perfectly even.

The piece is divided into 30 rows. All but one of these rows contain a large red disc (representing Jupiter) and a large yellow disc (representing Saturn). A row may also contain smaller discs, representing Mars in pink, Venus in white and Mercury in blue. The purple discs represent the ex-planet Pluto. All of the discs hugely exaggerate the size of their planets.

Each row represents the same strip of the sky, in the sense that if I had included stars on the piece, the same stars would appear in the same positions on every row. From top to bottom, the rows show that strip of sky at 25-day intervals, covering a period roughly from roughly one year before the Great Conjunction to one year after. The discs in each row indicate the positions of any planets that are in that strip of sky at the time.

Concentrating on Jupiter (red) and Saturn (yellow) first, we see that they have a general leftward motion, but with periods of rightward motion. Jupiter’s overall leftward motion is faster than Saturn’s: it starts to the right of Saturn and finishes to the left. Because Jupiter overtakes Saturn, there comes a point where they are at the same place in the sky. This is the Great Conjunction: in this row, both Jupiter and Saturn are represented by a single large white disc.

Mars, Venus and Mercury move much faster. Mars crosses our field of view in only 4 rows (roughly 100 days) and Venus and Mercury make repeat visits. Pluto wavers back and forth without appearing to make much leftward progress at all.



Why do the planets move along the same line? They don’t exactly, but it’s pretty close. All of the planets, including the Earth, move around the Sun in roughly circular orbits. Except for Pluto’s, these orbits are more or less in the same plane (like circular stripes on a dinner plate). Because our viewpoint (the Earth) is in this plane, we look at all the orbits edge on, and the planets appear to follow very similar straightish paths across the sky. I have chosen to neglect the slight variations in path and depict the planets as following one another along exactly the same straight line

Why do Jupiter and Saturn move mainly right to left? Looking down from the North, all of the planets orbit anticlockwise. Mars, Jupiter, and Saturn have bigger orbits than the Earth, we’re observing them from inside their orbits (and from the Earth’s northern hemisphere). Thus their general movement is leftwards. (If you don’t get it, whirl a conker around your head on a string, so that it moves anticlockwise for someone looking down. The conker will move leftwards from your point of view.) The orbits of Venus and Mercury are inside the Earth’s orbit; their movements as seen from the Earth are rather complicated.

Why do Jupiter, Saturn, and Pluto sometimes move from left to right? Earth is in orbit too, so we’re observing the planets from a moving viewpoint. If you move your head from side to side, nearby objects appear to move back and forth against the background of distant objects. Exactly the same effect happens with our view of the outer planets as the Earth moves around its orbit from one side the Sun to the other – they appear to move back and forth once a year against the background of distant stars. But at the same time, they are also really moving leftwards (as we look at them). The sum of the planet’s real motion with their apparent back-and-forth motion gives the lurching movement that we see: mainly leftwards but with episodes of rightward motion. Note that the planets never actually move backwards: they just appear to. The same thing happens to Mars, but none of its periods of retrograde motion coincided with its visit to our strip of the sky.

Why do some planets move faster across the sky than others? The larger a planet’s orbit, the more slowly it moves. For the outer planets, a larger orbit also  means that we’re watching it from a greater distance, so it appears to move more slowly still. Saturn’s orbit is about twice as big as Jupiter’s, so it moves more slowly across the sky than Jupiter. Jupiter “laps” Saturn about once every 20 years: these are the Great Conjunctions. Mars’ orbit is smaller than Jupiter’s, so it moves more quickly across the sky. Meanwhile lonely Pluto plods around its enormous orbit so slowly that the leftward trend of its motion is barely discernible; all we see is the side-to-side wobble caused by our own moving viewpoint. As for Mercury and Venus: it’s complicated.

Please could you stop being evasive about the movements of Venus and Mercury? It really is complicated. The orbits of Venus and Mercury are smaller than the Earth’s: we observe them from the outside. If the Earth was stationary, we’d see Venus and Mercury moving back and forth from one side of the Sun to the other. Returning to our conker-whirling experiment, it’s like watching a conker being whirled by somebody else rather than whirling it yourself. But the Earth is moving around its orbit too. And then Venus and Mercury are also moving rather fast: Mercury orbits the Sun 4 times for each single orbit made by the Earth. Combine all of these things and it becomes very confusing. Whereas the outer planets’ episodes of retrograde (backwards) movement across the sky occur less than once a year, Mercury is retrograde about three times a year.

Do the planets really follow a horizontal path across the sky? This question doesn’t have an answer. We’re using the pattern of stars, all inconceivably distant compared to the planets, as the fixed background against which we view the movement of the planets. You may have noticed that the stars move in arcs across the sky during the night; this is due to the Earth’s rotation on its axis. So our strip of sky moves in an arc too, and turns as it moves. So if it ever is horizontal, it is only briefly so, and when and if it is ever horizontal will depend upon your latitude.

Jupiter and Saturn never exactly lined up, did they? No, they didn’t (see the answer to the first question). On this scale, at the Great Conjunction the discs representing Jupiter and Saturn should be misaligned vertically by about a millimetre. With our hugely over-sized planets, this means almost total overlap, which still misrepresents the actual event, where the planets were separated by many times their own diameter. And for all other rows, where the two discs don’t overlap, a millimetre’s misalignment would be imperceptible. A final and maybe more compelling reason for my neglect of the misalignment of the planets’ paths is that I don’t know how to calculate it.

Anything else to confess?  Yes. There’s a major element of fiction about the piece in that it’s not physically possible to see all of these arrangements of the planets. The reason is that for some of these snapshots, the Earth is on the opposite side of the Sun from most or all of the planets, and Sun’s light would drown out the light from the planets. In other words, it would be daytime when the planets are above the horizon, and therefore in practice they would be invisible. This was almost the case for the Great Conjunction, where there was only a short period of time between it becoming dark enough for Jupiter and Saturn to be visible, and them disappearing over the horizon.

A further element of fiction is that, even in the depths of a Scottish winter’s night, Pluto is far too faint to be seen with the naked eye, not to mention not being regarded by the authorities as a planet any more. But it was passing at the time of the Great Conjunction and it seemed a pity to miss it out.