Recently I spent a few days walking and wild camping among the mountains of the English Lake District. I was moving on every day and carrying everything I needed for the trip on my back. My rucksack got lighter and lighter as I worked my way through my food supply, and as there was no evidence that my body was getting any heavier, I started wondering where all that mass goes.
The food was largely very dry, so I’m not going to concern myself with water (though some water will be generated as the food is metabolised). Of the dry mass, I will excrete some as faeces, and some in my urine. I’ll secrete some skin oils and will also shed some skin. Then there’s hair, toenails and fingernails, and we mustn’t forget the odd bit of snot and earwax. Quite a trail of debris, really.
But what I started to wonder as I walked was: how much of this dry mass do I breathe out? I must lose some mass with each breath, because outbreaths are poorer in oxygen and richer in carbon dioxide than inbreaths, and carbon dioxide is heavier than oxygen. Can we put some numbers to this loss of mass?
It turns out that we can, and the result surprised me: by a big margin, the most important exit route for carbon appears not to be my bottom, but my lungs.
The sums
The volume of gas exchanged on each breath in ordinary breathing is about 0.5 litres. On the way in, the concentration of carbon dioxide is practically nothing (about 0.04%), but on the way out, it’s about 5%. So every 20 breaths results in me breathing out the equivalent of half a litre of pure CO2, which means 40 breaths to breathe out a litre.
Assuming that for every molecule of carbon dioxide breathed out, there is one molecule of oxygen breathed in, then the extra (non-water) mass breathed out is just the mass of the carbon in the carbon dioxide; we can ignore the oxygen.
How much carbon is there in one litre of CO2? One mole of carbon is 12 grams, and one mole of a perfect gas occupies roughly 24 litres in everyday conditions. So one litre of carbon dioxide contains one-24th of a mole of carbon, or about 0.5 grams.
So every 40 breaths, I breathe out 0.5 grams of carbon that originally entered my body as food. At rest, I breathe about once every 4 seconds, so it takes 2 × 40 × 4 = 320 seconds to breathe out a gram of carbon. There are 86400 seconds in a day, so over the course of a day, I’ll breathe out 86400/320 = 270 grams of carbon.
I’ve made all sorts of approximations, so let’s say that I breathe out 200-300 grams of carbon daily.
What about the other exit routes for carbon?
This is a much bigger number than I expected. How does it compare to the other output routes for carbon, and do the numbers stack up when we consider how much carbon I ingest?
From various internet sources, fat is something like 75% carbon, carbohydrate is about 40% carbon, and protein is about 50% carbon. On this basis, I’m going to estimate that the dry matter of faeces is in the region of 50% carbon. A typical person produces about 130 grams of faeces a day, of which 75% is water. So the amount of carbon excreted daily in faeces is about 130 × 0.25 × 0.5 = 16 grams.
Wikipedia tells me that we typically produce about 1.4 litres of urine a day, with 6.9 grams per litre of carbon, which gives about 10 grams of carbon excreted by this route per day.
Several internet sources (which may be equally wrong) suggest that we shed about 10 grams of dead skin every day. I don’t know what the moisture content of dead skin is, but it looks like we’re not going to lose more than 5g of carbon by this route every day.
Neglecting the other minor carbon loss processes, this gives a total of about 30 grams of carbon leaving the body daily by routes other than the lungs, compared to 200-300 grams via the lungs.
If these sums are right, I must ingest an equal amount of carbon in my food. This isn’t easy to estimate at all precisely. My diet is largely a mixture of fat, protein, and carbohydrate, but I don’t know what the balance is, and it’ll vary a lot between people. So let’s go to an extreme and suppose that I meet a daily energy requirement of 2500 kilocalories by eating fat only. At 9 kilocalories per gram I’d need to eat 280 grams of grease a day. At 75% carbon, this would be 210 grams of carbon. Doing a similar calculation assuming a diet of undiluted protein or carbohydrate gives a daily carbon intake of 310 grams or 250 grams respectively. So maybe I eat about 250 grams of carbon per day, which tallies reasonably well with the total figure for carbon output that I calculated earlier.
Not the Lake District
The picture at the top of the post wasn’t actually taken in the Lake District. It was taken in Glen Feshie, in the Cairngorms. To keep the weight down, I didn’t take my camera on the trip to the Lakes.