A machine full of noises

Sarah Kenchington and I made this machine for the Full of Noises festival in Barrow-in-Furness in August 2018.

Sarah designed and made the bicycly bits that raise the table-tennis balls from the pit into the hoppers at the top, and I made the two devices that the balls descend through on their way to the cow bells and glockenspiel.

The complete machine also included other noise-making devices and an exercise-bike powered drive system, both made by Sam Underwood. It was housed in a greenhouse. Here’s a video of the whole thing in action at Full of Noises.

We shot this video in a hurry on a dark damp Tuesday morning before packing the machine up to take it to Barrow, so it comes with apologies for the poor lighting in places.

The peg board (Galton board) that appears from 1:13 to 1:31 is an established classic (see below if you want to make one). The swinging-ramp ball-feeding device (2:09 to 2:18) is a revival of something I designed for the Chain Reactor.

What’s new from me is the arrangement for feeding the balls from the wire chute into the swinging-ramp assembly (1:56 to 2:18). Its operation should be clear from the video, except perhaps for one detail. Because this device may jam if it tries to collect a ball that has not quite arrived at the bottom of the wire chute, and because the timing of the arrival of the balls is erratic, it’s necessary to maintain a queue of balls in the chute to guarantee that there’s always a ball in place at the bottom to be collected. To achieve this, we arranged that the average rate of ball delivery into the chute (determined by the number of spoons on the bicycle chain) was greater than the rate of collection of balls out of the chute, and had an overflow route for the excess balls. Once three balls have accumulated in the chute, any further balls are diverted back into the ball pit (2:30-2:40).

Sarah and I are very grateful to Edinburgh Tool Library for the use of their Portobello workshop, and to Bike for Good and Magic Cycles for donating bicycle parts.

Making the Galton board

Chris Wallace and I discovered while making the Chain Reactor that the horizontal spacing of the pegs on a Galton Board is important. If the spacing is too great, a ball that sets off rightwards will tend to keep going rightwards, and vice versa. To get good randomisation, the ball should rattle between each pair of pegs, and to get this to happen, the gap between the pegs should be only slightly greater than the diameter of the balls. This in turn means that the pegs need to be precisely placed to avoid there being pairs of pegs that don’t let the balls through at all.

In that project we achieved the necessary precision by making the position of each peg (a bolt) adjustable, but with something like 100 bolts, this difficult job was very tedious and sorely tried Chris’s patience.

This time round, I developed a system that let me get every hole in the right place first time. Firstly, I cut the board into four strips so that all parts of it were accessible to a pillar drill. drilling jigThis guaranteed that every hole was accurately perpendicular. Secondly, I made a drilling jig (top right) to get the hole spacing correct. After drilling each hole, I put the peg (the bolt on the right-hand part of the jig) into the just-drilled hole, and the drill for the next hole into the drill hole on the left-hand part of the jig. The spacing between the peg and drill hole is adjustable using the long bolt. ThirdlyPillar drill table, I made a large custom table for the pillar drill (bottom right), with a fence arrangement so that each row of holes was straight.

When I was doing the drilling, the only measurements I had to make were to get the first hole in each row in the right place with respect to the previous row. It took me a few hours to perfect the drilling arrangements, but then only an hour or so to drill 90 holes, all exactly where I wanted them.

peg board

Leave a Reply

Your email address will not be published. Required fields are marked *