Bradycardia

Here again is the processor package from my old laptop. The processor has a clock in it that delivers electric pulses that trigger the events in the processor. The clock on this processor “ticks” at 2.2 gigahertz, that is, it sends out 2.2 billion pulses per second.

Over two thousand million pulses every second! How can we make sense of such a huge number?

In this post, I’m going to do with time what I did with space in the previous post. I’m going to ask the question:

Suppose that we slow down the processor so that you could just hear the individual “ticks” of the the processor clock (if we were to connect it to a loudspeaker), and suppose that we slow down my bodily processes by the same amount. How often would you hear my heart beat?

Answer: My heart would beat about once every year and a half.

The calculation

How slow would the processor clock need to tick for me to be able to hear the individual ticks? A sequence of clicks at the rate of 10 per second clearly sounds like a series of separate clicks. Raise the frequency to 100 per second, and it sounds like a rather harsh tone; the clicks have lost their individual identity. Along the way, the change from sounding like a click-sequence to sounding like a tone is rather gradual; there’s no clear cutoff.

You can try it yourself using this online tone generator. Choose the “sawtooth” waveform. This delivers a sharp transition once per cycle, which is roughly what a train of very short clicks would do, and play around with the value in the “hertz” box. (Hertz is the unit of frequency; for example, 20 hertz is 20 cycles per second.)

I found that a 40 hertz sawtooth definitely sounds like a series of pulses, and that a 60 hertz sawtooth has a distinct tone-like quality. So let’s say that the critical frequency is 50 hertz, that is, 50 ticks per second. I don’t expect you to agree with me exactly.

If I can hear individual pulses at a repetition rate of 50 hertz, then to hear the ticks of a 2.2 gigahertz clock I need to slow down the clock by a factor of

(1)   \begin{equation*}   \frac{2.2 \times 10^9}{50} = 44 \times 10^6 \end{equation*}

At rest, my heart beats about once per second, so if it was slowed down by the same factor as the processor clock, it would beat every 44 × 106 seconds, which is about every 17 months.

Or should it be twice as long?

The signal from the processor clock is usually a square wave with 50% duty cycle. Try the square wave option on the online signal generator with a 1 hertz frequency (one cycle per second). You’ll hear two clicks per second, because in each cycle of the wave, there are two abrupt transitions, a rising one and a falling one.

This means that if we did connect a suitably slowed-down processor clock to a loudspeaker, we’d hear clicks at twice the nominal clock rate. Looked at this way, we’d need to slow down the clock, and my heart, twice as much as we’ve calculated above. My heart would beat once every three years.

However, most processors don’t respond to both transitions of the clock signal. Some processors respond to the rising transition, others to the falling transition. To assume that we hear both of these transitions is to lose the spirit of what we mean by one “tick” of the processor clock.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *