This is a photograph that I took as a response to a challenge that was set by photographer Kim Ayres as part of his weekly podcast Understanding Photography. The challenge was to produce a photo where the main interest was provided by shadows. I lit a rose cutting using red, green, and blue lights that were about 3 metres away and 30 centimetres apart from each other. The result is a gorgeous display of coloured shadows. Coloured shadows are nothing new, but they are always lovely.
Kim suggested that I do a blog post to explain more about how coloured shadows arise. To do this I set up an arrangement for creating simple coloured shadows. One part of the arrangement is three lights: red, green, and blue arranged in a triangle.
The lights shine upon a white screen set up about 3 metres away. In front of the screen, a wire rod supports a small black disc.
First of all, let’s turn on the red light only. The screen appears red, and we can see the shadow of the disc on it. The shadow occupies the parts of the screen that the red light can’t reach because the disc is in the way.
Next, we’ll turn on the green light only. Now the screen appears green, and for the same reasons as before, there’s a shadow on it. The shadow is further to the left than it was with the red light; this is because the green light is to the right of the red light as you face the screen.
Next, we’ll turn on the blue light only, with the expected result. The blue light is lower than the red and green ones, so the shadow appears higher on the screen. (The shadow is less sharp than the previous two. This is because my blue light happens to be larger than the red or green lights).
Now we’re going to turn on both the red and green lights. Perhaps unsurprisingly, we see two shadows. They are in the same places as the shadows we got with the red and green lights on their own. But now they are coloured. The shadow cast by the red light is green. This is because, although the disc blocks red light from this part of the screen, it doesn’t block green light, so the green light fills in the red light’s shadow. Similarly, the shadow cast by the green light is red.
The screen itself appears yellow. This is because, by the rules of mixing coloured lights (which aren’t the same as the rules for mixing coloured paints), red light added to green light gives yellow light.
We can do the same with the other possible pairs of lights: red & blue, and green & blue. (The green shadow looks yellowish here. It does in real life too. I think this is because it’s being seen against the bluish background.)
We’re now going to turn on all three lights. As you might expect, we get three shadows. The colours of the shadows are more complicated now. The shadow cast by the red light is filled in with light from both of the other lights – green and blue – so it has the greeny-blue colour traditionally referred to as cyan. The shadow cast by the green light is filled in with light from the red and blue lights, so it is the colour traditionally called magenta. And the shadow cast by the blue light is filled in with light from the red and green lights, and thus appears yellow.
The rest of the screen, which is illuminated by all three lights, is white, because the laws for mixing coloured lights tell us that red + green + blue = white. The white is uneven because my lights had rather narrow and uneven beams.
Finally, let’s add further richness by using a larger disc, so that the shadows of the three lights overlap. Now we get shadows in seven colours, as follows.
Where the disc blocks one light and allows two lights to illuminate the screen, we see the colours of the three pairwise mixtures of the lights: yellow (red+green), magenta (red+blue), and cyan (green+blue).
Where the disc blocks two lights and allows only one light to illuminate the screen, we see the colours of the three individual lights: red, green, or blue.
And in the middle, there’s a region where the disc blocks the light from all three lights, so here we get a good old-fashioned black shadow.
If it’s a bit hard to wrap your head around this, let’s trying looking at things from the screen’s point of view. Here I’ve replaced the screen with a thin piece of paper so that the shadows are visible from both sides. I’ve made holes in the screen in the middle of each of the coloured regions, so that we can look back through the screen towards the lights.
Here’s what you see when we look back through the magenta shadow. We can see the red light and the blue light, but not the green one – it’s hidden behind the disc.
This is the view looking back through the green shadow. We can see only the green light. The red and blue lights are hidden behind the disc.
And so on…
I’ve written some more thoughts about coloured shadows here.
Hi Ben,
Loved reading this, as it’s along the same lines as the experiments I’ve been conducting myself, although your disc on a wire is much more professional looking than my piece of card.
What I’m intrigued by is the shadow mixing, as I’ve noticed too that RGB lights cast CMY shadows and that those CMY shadows can combine to make RGB again and ultimately black.
However in my experiment the CMY shadows can be made to combine to create black with no obstruction, suggesting that pure CMY light can mix to create black.
What I’d love to know is if this works in reverse. Can direct CMY lights combine to cast RGB shadows?
I do a lot of work in colour in paint and have always believed that colour in light and paint follow the same rules, but this area I must admit I find a little perplexing. Any help would be greatly appreciated.
All the best
Ian